Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis.
نویسندگان
چکیده
BACKGROUND Oxidation of low-density lipoprotein (LDL) and the subsequent processing of oxidized LDL (oxLDL) by macrophages results in activation of specific T cells, which contributes to the development of atherosclerosis. Oral tolerance induction and the subsequent activation of regulatory T cells may be an adequate therapy for the treatment of atherosclerosis. METHODS AND RESULTS Tolerance to oxLDL and malondialdehyde-treated LDL (MDA-LDL) was induced in LDL receptor-/- mice fed a Western-type diet by oral administration of oxLDL or MDA-LDL before the induction of atherogenesis. Oral tolerance to oxLDL resulted in a significant attenuation of the initiation (30% to 71%; P<0.05) and progression (45%; P<0.05) of atherogenesis. Tolerance to oxLDL induced a significant increase in CD4+ CD25+ Foxp3+ cells in spleen and mesenteric lymph nodes, and these cells specifically responded to oxLDL with increased transforming growth factor-beta production. Tolerance to oxLDL also increased the mRNA expression of Foxp3, CTLA-4, and CD25 in the plaque. In contrast, tolerance to MDA-LDL did not affect atherogenesis. CONCLUSIONS OxLDL-specific T cells, present in LDL receptor-/- mice and important contributors in the immune response leading to atherosclerotic plaque, can be counteracted by oxLDL-specific CD4+ CD25+ Foxp3+ regulatory T cells activated via oral tolerance induction to oxLDL. We conclude that the induction of oral tolerance to oxLDL may be a promising strategy to modulate the immune response during atherogenesis and a new way to treat atherosclerosis.
منابع مشابه
Effect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells
Background: Vascular calcification is an important stage in atherosclerosis. During this stage, vascular smooth muscle cells (VSMC) synthesize many osteogenic factors such as osteonectin (encoded by SPARC). Oxidative stress plays a critical role in atherosclerosis progression, and its accumulation in the vascular wall stimulates the development of atherosclerosis and vascular calcification. The...
متن کاملComparative Effects of Copper, Iron, Vanadium and Titanium on Low Density Lipoprotein Oxidation in vitro
Oxidation of low density lipoprotein (LDL) has been strongly implicated in the phathogenesis of atherosclerosis. The use of oxidants in dietary food stuff may lead to the production of oxidized LDL and may increase both the development and the progression of atherosclerosis. The present work investigated the effects of some elements including: copper (Cu), iron (Fe), vanadium (V) and titanium (...
متن کاملCompare the Effect of Eicosapentaenoic Acid and Oxidized Low-Density Lipoprotein on the Expression of CD36 and Peroxisome Proliferator-Activated Receptor Gamma
Background: There is evidence that CD36 promotes foam cell formation through internalizing oxidized LDL (ox-LDL) into macrophages therefore, it plays a key role in pathogenesis of atherosclerosis. In addition, CD36 expression seems to be mediated by nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ). The aim of the present study was to evaluate and compare the effect of ...
متن کاملGlucose Influence on Copper Ion-Dependent Oxidation of Low Density Lipoprotein
Background: It is well established that oxidative modification of low density lipoprotein (LDL) plays a causal role in human atherogenesis and the risk of atherosclerosis is increased in patients with diabetes mellitus. We examined the in vitro effect of glucose on native and glycated LDL oxidation using copper ion dependent oxidation system. Methods: In this study, LDL was isolated from plasma...
متن کاملInduction of neonatal tolerance to oxidized lipoprotein reduces atherosclerosis in ApoE knockout mice.
BACKGROUND In the course of atherosclerosis, humans and apolipoprotein (apoE) Knockout (KO) mice exhibit an active cell-mediated and humoral immune process, both at the systemic level and within atheromata. Low density lipoproteins (LDL) infiltrate the vascular wall, where they are oxidatively modified. This oxidative modification may generate new epitopes for which tolerance is not achieved du...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 114 18 شماره
صفحات -
تاریخ انتشار 2006